Long-lasting exercise involvement protects against decline in V̇O2max and V̇O2 kinetics in moderately active women

Author:

Zubac Damir12,Ivančev Vladimir2,Valić Zoran3,Šimunič Boštjan1

Affiliation:

1. Institute for Kinesiology Research, Science and Research Center of Koper, Koper, Slovenia.

2. Faculty of Kinesiology, University of Split, Split, Croatia.

3. Department of Integrative Physiology, University of Split, School of Medicine, Split, Croatia.

Abstract

We studied the effects of age on different physiological parameters, including those derived from (i) maximal cardiopulmonary exercise testing (CPET), (ii) moderate-intensity step transitions, and (iii) tensiomyography (TMG)-derived variables in moderately active women. Twenty-eight women (age, 19 to 53 years), completed 3 laboratory visits, including baseline data collection, TMG assessment, maximal oxygen uptake test via CPET, and a step-transition test from 20 W to a moderate-intensity cycling power output (PO), corresponding to oxygen uptake at 90% gas exchange threshold. During the step transitions, breath-by-breath pulmonary oxygen uptake, near infrared spectroscopy derived muscle deoxygenation (ΔHHb), and beat-by-beat cardiovascular response were continuously monitored. There were no differences observed between the young and middle-aged women in their maximal oxygen uptake and peak PO, while the maximal heart rate (HR) was 12 bpm lower in middle-aged compared with young (p = 0.016) women. Also, no differences were observed between the age groups in τ pulmonary oxygen uptake, ΔHHb, and τHR during on-transients. The first regression model showed that age did not attenuate the maximal CPET capacity in the studied population (p = 0.638), while in the second model a faster τ pulmonary oxygen uptake, combined with shorter TMG-derived contraction time (Tc) of the vastus lateralis (VL), were associated with a higher maximal oxygen uptake (∼30% of explained variance, p = 0.039). In conclusion, long lasting exercise involvement protects against a maximal oxygen uptake and τpulmonary oxygen uptake deterioration in moderately active women. Novelty: Faster τ pulmonary oxygen uptake and shorter Tc of the VL explain 33% of the variance in superior maximal oxygen uptake attainment. No differences between age groups were found in τ pulmonary oxygen uptake, τΔHHb, and τHR during on-transients.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Reference48 articles.

1. Muscle Oxidative Capacity Is Reduced in Both Upper and Lower Limbs in COPD

2. Recruitment of the Thigh Muscles During Sprint Cycling by Muscle Functional Magnetic Resonance Imaging

3. Cardiovascular and respiratory responses to apneas with and without face immersion in exercising humans

4. The Oxygen Uptake Response to Incremental Ramp Exercise

5. Cerretelli, P., and di Prampero, P. E. 1987. Gas exchange in exercise. In Handbook of Physiology, Section 3, The Respiratory System, vol. IV. Edited by L.E. Fahri, and S.M. Tenney. American Physiological Society. pp. 297–339.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3