Maintaining mitochondrial NAD+ homeostasis is key for heat-induced skeletal muscle injury prevention despite presence of intracellular cation alterations

Author:

Chen Yifan1ORCID,Yu Tianzheng12,Deuster Patricia A.1

Affiliation:

1. Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA

2. Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA

Abstract

Mitochondrial dysfunction is implicated in heat-induced skeletal muscle (SKM) injury and its underlying mechanisms remain unclear. Evidence suggests that cellular ions and molecules, including divalent cations and adenine nucleotides, are involved in the regulation of mitochondrial function. In this study, we examined Ca2+, Mg2+, and NAD+ levels in mouse C2C12 myoblasts and SKM in response to heat exposure. During heat exposure, mitochondrial Ca2+ levels increased significantly, whereas cytosolic Ca2+ levels remained unaltered. The mitochondrial Ca2+ levels in the SKM of heat-exposed mice were 28% higher compared to control mice. No changes in cytosolic Ca2+ were detected between the two groups. Following heat exposure, cytosolic and mitochondrial Mg2+ levels were reduced by 47% and 23% in C2C12 myoblasts, and by 51% and 44% in mouse SKMs, respectively. In addition, heat exposure decreased mitochondrial NAD+ levels by 32% and 26% in C2C12 myoblasts and mouse SKMs, respectively. Treatment with the NAD+ precursor nicotinamide riboside (NR) partially prevented heat-induced depletion of NAD+. Additionally, NR significantly reduced heat-increased mitochondrial fission, mitochondrial depolarization, and apoptosis in C2C12 myoblasts and mouse SKMs. No effects of NR on heat-induced changes in intracellular Ca2+ and Mg2+ levels were observed. This study provides in vitro and in vivo evidence that acute heat stress causes alterations in mitochondrial Ca2+, Mg2+, and NAD+ homeostasis. Our results suggest mitochondrial NAD+ homeostasis as a therapeutic target for the prevention of heat-induced SKM injury.

Funder

National Institutes of Health

Office of Dietary Supplements

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3