Rosemary extract increases neuronal cell glucose uptake and activates AMPK

Author:

Baron David C.1,Marko Daniel M.1,Tsiani Evangelia12,MacPherson Rebecca E.K.13

Affiliation:

1. Department of Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.

2. Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada.

3. Centre for Neuroscience, Brock University, St. Catharines, ON L2S 3A1, Canada.

Abstract

Glucose is the primary metabolic substrate of neurons and is responsible for supporting many vital functions including neuronal signalling. Decreases in glucose uptake and utilization are common characteristics of dementia, particularly Alzheimer’s disease, and thus agents that can restore neuronal glucose availability may be especially valuable to the field. Diets rich in antioxidants and polyphenols have been associated with reductions in the risk of chronic disease that are associated with aging. In previous studies, rosemary extract (RE) has been reported to have antioxidant, anti-inflammatory, anticancer, and antidiabetic properties. The purpose of the present study was to explore the effects of RE on neuronal glucose uptake. Human SH-SY5Y neuroblastoma cells exposed to varied concentrations of RE showed a dose-dependent increase in glucose uptake, with a significant increase observed following treatment with 5 µg/mL RE for 2 h (159% ± 20.81% of control) that was comparable to maximum insulin stimulation (135.6% ± 3.2% of control). This increase in glucose uptake was paralleled by increases in AMP-activated protein kinase (AMPK), but not Akt, phosphorylation/activation. The present study is the first to report that treatment with rosemary extract can stimulate glucose uptake in a neuronal cell line. These results demonstrate the potential of RE to be used as an agent to regulate neuronal glucose homeostasis. Novelty: RE increases neuronal glucose uptake. RE activates AMPK in neurons. RE increases neuronal glucose uptake independently of insulin signalling.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3