Homocysteine stimulates NADPH oxidase-mediated superoxide production leading to endothelial dysfunction in rats

Author:

Edirimanne Vathsala E.R.1,Woo Connie W.H.1,Siow Yaw L.1,Pierce Grant N.1,Xie Jiu Y.1,O Karmin1

Affiliation:

1. Department of Animal Science, Department of Physiology, University of Manitoba, Canadian Centre for Agri-Food Research in Medicine, St. Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada.

Abstract

Elevation of blood homocysteine (Hcy) levels (hyperhomocysteinemia) is a risk factor for cardiovascular disorders. We previously reported that oxidative stress contributed to Hcy-induced inflammatory response in vascular cells. In this study, we investigated whether NADPH oxidase was involved in Hcy-induced superoxide anion accumulation in the aorta, which leads to endothelial dysfunction during hyperhomocysteinemia. Hyperhomocysteinemia was induced in rats fed a high-methionine diet. NADPH oxidase activity and the levels of superoxide and peroxynitrite were markedly increased in aortas isolated from hyperhomocysteinemic rats. Expression of the NADPH oxidase subunit p22phox increased significantly in these aortas. Administration of an NADPH oxidase inhibitor (apocynin) not only attenuated aortic superoxide and peroxynitrite to control levels but also restored endothelium-dependent relaxation in the aortas of hyperhomocysteinemic rats. Transfection of human endothelial cells or vascular smooth muscle cells with p22phox siRNA to inhibit NADPH oxidase activation effectively abolished Hcy-induced superoxide anion production, thus indicating the direct involvement of NADPH oxidase in elevated superoxide generation in vascular cells. Taken together, these results suggest that Hcy-stimulated superoxide anion production in the vascular wall is mediated through the activation of NADPH oxidase, which leads to endothelial dysfunction during hyperhomocysteinemia.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3