THE ROLE OF ALPHA-KETOLS IN THE LOW-SUGAR REDOX RECIPE FOR LOW TEMPERATURE EMULSION COPOLYMERIZATION

Author:

Orr R. J.,Williams H. Leverne

Abstract

It was found that the induced decomposition of peroxy compounds could lead to faster rates of polymerization or practical rates of polymerization at lower temperatures. In Germany polymerization recipes were developed containing a peroxy compound in the oil phase, a reducer in the aqueous phase and a metal carrier. This idea was transferred to America after the war and became the basis of the present recipes used in the production of cold rubbers. As reducers the most commonly used appear to be digested d-glucose or an excess of ferrous iron but recently the polyamines and other amine compounds have been found to be quite effective. The mixture of amine and sugar was better than either alone. It has been shown that this mixture will function in the presence of reactive monomers such as acrylonitrile. The role of such reducers is of considerable interest so that further studies were undertaken. The results obtained may be illustrated by acetoin. As the amount of acetoin is increased in the recipe the amount of ferrous iron required for maximal conversion in a given time is decreased. This is because at higher than the optimal amounts, although the reaction rate is still increasing, the catalyst system is rapidly exhausted so that the reaction dies at a lower conversion. The data can be explained by assuming formation of free radicals by the induced decomposition of the peroxide either by the acetoin, the ferrous iron, or a complex between the iron and acetoin. This free radical then initiates polymerization. The acetoin free radical residue can induce the further decomposition of the peroxide or possibly can reduce ferric iron to ferrous. Other compounds yield similar results.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Relation between the degradation of DDT and the iron redox system in soils;Journal of Agricultural and Food Chemistry;1972-03

2. Polymerization;Industrial & Engineering Chemistry;1952-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3