Author:
Kim Yail J,Green Mark F,Wight R Gordon
Abstract
This paper describes the application of a fracture mechanics model (Hillerborg 1990) to concrete structures, including strengthening with prestressed carbon fibre reinforced polymer (CFRP) sheets. One benefit of the proposed fracture mechanics model, consisting of a unique combined stress–strain response of concrete, is that it includes the size effect of reinforced concrete beams; however, its application and validation have not been fully investigated. The proposed model is reviewed and further developed to cover prestressed concrete beams including a beam strengthened with a prestressed CFRP sheet. To evaluate the model, various approaches such as finite element analysis, a strength-based model, a conventional design method, and experimental results are compared with the fracture mechanics model. The size-dependent parameter (ε1) significantly affects the predicted behaviour of reinforced or prestressed concrete beams, depending on the contribution of reinforcement. Based on the current assessment, ε1 = 0.005 is recommended as an upper limit for normal strength concrete.Key words: carbon fibre reinforced polymer sheet, flexure, fracture mechanics, prestressed concrete beam, reinforced concrete beam, strengthening, size effect.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献