Drivers of ecosystem metabolism in restored and natural prairie wetlands

Author:

Bortolotti Lauren E.1,St. Louis Vincent L.11,Vinebrooke Rolf D.1

Affiliation:

1. Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.

Abstract

Elucidating drivers of aquatic ecosystem metabolism is key to forecasting how inland waters will respond to anthropogenic changes. We quantified gross primary production (GPP), respiration (ER), and net ecosystem production (NEP) in a natural and two restored prairie wetlands (one “older” and one “recently” restored) and identified drivers of temporal variation. GPP and ER were highest in the older restored wetland, followed by the natural and recently restored sites. The natural wetland was the only net autotrophic site. Metabolic differences could not be definitively tied to restoration history, but were consistent with previous studies of restored wetlands. Wetlands showed similar metabolic responses to abiotic variables (photosynthetically active radiation, wind speed, temperature), but differed in the direct and interactive influences of biotic factors (submersed aquatic vegetation, phytoplankton). Drivers and patterns of metabolism suggested the importance of light over nutrient limitation and the dominance of autochthonous production. Such similarity in ecosystem metabolism between prairie wetlands and shallow lakes highlights the need for a unifying metabolic theory for small and productive aquatic ecosystems.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3