Long-term population dynamics and conservation risk of migratory bull trout in the upper Columbia River basin

Author:

Kovach Ryan P.1,Armstrong Jonathan B.2,Schmetterling David A.3,Al-Chokhachy Robert4,Muhlfeld Clint C.56

Affiliation:

1. US Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT 59802, USA.

2. Oregon State University, Department of Fisheries and Wildlife, Corvallis, OR 97331, USA.

3. Montana Fish, Wildlife & Parks, 3201 Spurgin Road, Missoula, MT 59804, USA.

4. US Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715, USA.

5. US Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT 59936, USA.

6. University of Montana, Flathead Lake Biological Station, Polson, MT 59860, USA.

Abstract

We used redd count data from 88 bull trout (Salvelinus confluentus) populations in the upper Columbia River basin to quantify local and regional patterns in population dynamics, including adult abundance, long-term trend, and population synchrony. We further used this information to assess conservation risk of metapopulations using eight population dynamic metrics associated with persistence. Local population abundances were generally low (<20 redds annually) and the majority of trends were either stable (85%) or declining (13%). Evidence of synchrony among populations was apparent but not related to fluvial distance between streams. Variability in annual abundances was 1.4–2.5 times lower in metapopulations than local populations, indicating moderate portfolio effects across the regional stock complex. Importantly, most metrics of conservation risk were uncorrelated with one another, emphasizing that multiple statistics describing population dynamics at various scales are needed for monitoring and assessing recovery. We provide a composite description of conservation risk based on local and regional population dynamics that can help inform conservation management decisions for bull trout and other freshwater fishes.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3