Interpopulation variation in thermal physiology among seasonal runs of Chinook salmon

Author:

Zillig Kenneth W.1ORCID,Lusardi Robert A.12,Cocherell Dennis E.1,Fangue Nann A.1

Affiliation:

1. Department of Wildlife, Fish and Conservation Biology, University of California, Davis, One Shields Ave., Davis, CA95616, USA

2. Center for Watershed Sciences/California Trout, University of California, Davis, One Shields Ave., Davis, CA95616, USA

Abstract

Conservation of species facing environmental change requires an understanding of interpopulation physiological variation. However, physiological data are often scarce and therefore pooled across populations and species, erasing potentially important variability between populations. Interpopulation variation in thermal physiology has been observed within the Salmonidae family, although it has not been associated with seasonally distinct migratory phenotypes (i.e., seasonal runs). To resolve whether thermal physiology is associated with life-history strategy, we acclimated four Sacramento River juvenile Chinook salmon ( Oncorhynchus tshawytscha) populations (Coleman fall-run, Feather River fall-run, Feather River spring-run, and Sacramento River winter-run) exhibiting different seasonal migratory phenotypes (fall-, spring-, and winter-run), at 11, 16, and 20 °C and assessed variation in growth rate, critical thermal maxima, and temperature-dependent metabolic traits. We identified population differences in the physiological parameters measured and found compelling evidence that the critically endangered and endemic Sacramento River winter-run Chinook population exhibits thermal physiology associated with its early-migration life-history strategy. Acclimation to warm temperatures limited the growth and metabolic capacity of winter-run Chinook salmon, highlighting the risk of future environmental warming to this endemic population.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3