The reaction of a captive herring school to playbacks of a noise-reduced and a conventional research vessel

Author:

Handegard Nils Olav1,Robertis Alex De2,Rieucau Guillaume1,Boswell Kevin3,Macaulay Gavin J.1

Affiliation:

1. Institute of Marine Research, Bergen, P.O. Box 1870 Nordnes, 5817 Bergen, Norway.

2. Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, USA.

3. Florida International University, Biscayne Bay Campus, Marine Sciences Building, 3000 NE 151st Street, North Miami, FL 33181, USA.

Abstract

Fish avoidance of vessels can bias fisheries-independent surveys. To understand these biases, recordings of underwater radiated vessel noise from a noise-reduced and a conventional research vessel were played back at the same sound pressure levels (SPL) as experienced in situ to Atlantic herring (Clupea harengus) in a net pen at two different densities. The noise-reduced vessel recording was also scaled to the same SPL as the conventional vessel to test if characteristics other than SPL affected the reactions. Overall, only weak reactions were observed, but reactions were stronger in the low-density school, in the middle of the pen, and for the scaled silent vessel compared with the conventional vessel. These observations may be attributable to the lack of low frequencies (<50 Hz) in the playbacks, differential motivation for reaction driven by fish density, higher low-frequency noise in the middle of the pen (but lower overall SPL), and characteristics other than SPL. These results call into question the use of SPL as a proxy for fish reaction to vessels as used in standards for construction of research vessels.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3