Influence of discharge, hydraulics, water temperature, and dispersal on density synchrony in brown trout populations (Salmo trutta)

Author:

Bret Victor1,Bergerot Benjamin2,Capra Hervé3,Gouraud Véronique1,Lamouroux Nicolas3

Affiliation:

1. EDF R&D, LNHE Department, HYNES (Irstea – EDF R&D), 6 Quai Watier, Chatou Cedex 78401, France.

2. Hepia Geneva, University of Applied Sciences Western Switzerland, Technology, Architecture and Landscape, Centre de Lullier, route de Presinge 150, CH-1254 Jussy, Switzerland.

3. IRSTEA Lyon, UR MALY, HYNES (Irstea – EDF R&D), centre de Lyon-Villeurbanne, F-69626 Villeurbanne, France.

Abstract

Environmental factors may cause synchronous density variations between populations. A better understanding of the processes underlying synchrony is fundamental to predicting resilience loss in metapopulations subject to environmental change. The present study investigated the determinants of synchrony in density time series of three age groups of resident brown trout (Salmo trutta) (0+, 1+, and adults) in 36 stream reaches. A series of Mantel tests were implemented to disentangle the relative effects on trout synchrony of geographical proximity, environmental synchrony in key environmental variables affecting trout dynamics (discharge, water temperature, hydraulics, and spawning substrate mobility), and density-dependent dispersal. Results indicated that environmental synchrony strongly explained trout synchrony over distances less than 75 km. This effect was partly due to a negative influence on 0+ trout of strong discharges during the emergence period and a more complex influence of substrate mobility during the spawning period. Dispersal between reaches had a weak influence on results. Juvenile and adult densities were strongly driven by survival processes and were not influenced by environmental synchrony. The results suggest that the environment can have general effects on population dynamics that may influence the resilience of metapopulations.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3