Long-term assessment of ichthyoplankton in a large North American river system reveals changes in fish community dynamics

Author:

Tucker Taaja R.1,Roseman Edward F.2,DeBruyne Robin L.1,Pritt Jeremy J.3,Bennion David H.2,Hondorp Darryl W.2,Boase James C.4

Affiliation:

1. Department of Environmental Sciences, University of Toledo, Toledo, OH 43606, USA.

2. US Geological Survey, Great Lakes Science Center, Ann Arbor, MI 48105, USA.

3. Ohio Department of Natural Resources-Division of Wildlife, Inland Fisheries Research Unit, Hebron, OH 43025, USA.

4. US Fish and Wildlife Service, Alpena Fish and Wildlife Conservation Office, Waterford Fisheries Station, Waterford, MI 48327, USA.

Abstract

Larval fishes are sensitive to abiotic conditions and provide a direct measure of spawning success. The St. Clair – Detroit River System, a Laurentian Great Lakes connecting channel with a history of environmental degradation, has undergone improvements in habitat and water quality since the 1970s. We compared 2006–2015 ichthyoplankton community data with those collected prior to remediation efforts (1977–1978) to identify patterns in spatial and temporal variability. Both assemblages exhibited a predictable phenology, with taxa from the subfamily Coregoninae dominant in early spring followed by families Osmeridae, Percidae, and Moronidae (May–June) and Cyprinidae and Clupeidae (June–August). While higher densities of larval fish were found in the Detroit River, greater taxa richness and Shannon diversity were observed in the St. Clair River. System wide, 14 new taxa were observed in the 2000s study period. In addition, relative densities of two nonnative species, alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax), declined since the 1970s. Increased larval fish richness and decreased densities of nonnative taxa in the 2000s are consistent with improvements to environmental conditions.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3