Connecting habitat to species abundance: the role of light and temperature on the abundance of walleye in lakes

Author:

Mahlum Shad1ORCID,Vitense Kelsey1,Corson-Dosch Hayley2,Platt Lindsay2,Read Jordan S.2,Schmalz Patrick J.3,Treml Melissa3,Hansen Gretchen J. A.1ORCID

Affiliation:

1. Department of Fish, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN 55188, USA

2. U.S. Geological Survey, Madison, WI 53705, USA

3. Minnesota Department of Natural Resources, Section of Fisheries, St. Paul, MN, USA, 55155

Abstract

Walleye ( Sander vitreus) are an ecologically important species managed for recreational, tribal, and commercial harvest. Walleye prefer cool water and low light conditions, and therefore changing water temperature and clarity potentially impacts walleye habitat and populations across the landscape. Using survey data collected from 1993 to 2018 from 312 lakes in Minnesota, we evaluated the relationship between thermal-optical habitat and the relative abundance of small (0–300 mm), medium (300–450 mm), and large (450 + mm) walleye. Thermal-optical habitat was positively correlated with the relative abundance of small and medium walleye but not large walleye. Walleye were more abundant in larger, naturally reproducing lakes opposed to smaller, stocked lakes. Thermal-optical habitat changed in 59% of lakes since 1980 (26% increasing and 33% decreasing) and appears to be driven primarily by changes in water clarity and thus optical habitat area. Our study provides important insights into local and regional drivers that influence walleye populations that can be used to assist fisheries managers in setting population goals and managing harvest.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3