Decoupling of otolith and somatic growth during anadromous migration in a northern salmonid

Author:

Morrison Christie M.12,Kunegel-Lion Mélodie1,Gallagher Colin P.2,Wastle Rick J.2,Lea Ellen V.3,Loewen Tracey N.2,Reist James D.2,Howland Kimberly L.2,Tierney Keith B.1

Affiliation:

1. University of Alberta, Department of Biological Sciences, Edmonton, AB T6G 2E9, Canada.

2. Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB R3T 2N6, Canada.

3. Fisheries and Oceans Canada, Inuvik, NT X0E 0T0, Canada.

Abstract

We assessed the fish length – otolith length relationship (FL–OL) in Dolly Varden (Salvelinus malma malma) to verify proportional growth. A decoupling was detected during first ocean migration where fish growth was occurring at a greater rate than otolith growth. Because of this decoupling, the application of traditional back-calculation models overestimated the size-at-age in premigratory char. We developed modified back-calculation equations from existing traditional models to account for this decoupling based on discontinuous piecewise regressions. The new biological intercept breakpoint method (BI–BP) provided the most accurate representation of fish size-at-age throughout all life history stages when compared with known size-at-capture values in fish. The decoupling indicates that factors other than somatic growth are important for otolith accretion. Physiological changes during smoltification likely alter calcium uptake and thereby affect calcium deposition rates on otoliths during this short but biologically critical time period of life history. It is probable that species exhibiting similar complex ontogenetic shifts in life history will likely exhibit decoupling to some extent in the FL–OL relationship.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3