A perspective on the ecological and evolutionary consequences of phenological variability in lake ice on north-temperate lakes

Author:

Feiner Zachary S.12ORCID,Dugan Hilary A.1ORCID,Lottig Noah R.3ORCID,Sass Greg G.4,Gerrish Gretchen A.3

Affiliation:

1. Center for Limnology, University of Wisconsin–Madison, Madison, WI 53706, USA

2. Science Operations Center, Office of Applied Science, Wisconsin Department of Natural Resources, Madison, WI 53716, USA

3. Trout Lake Station, Center for Limnology, University of Wisconsin–Madison, Boulder Junction, WI 54512, USA

4. Escanaba Lake Research Station, Office of Applied Science, Wisconsin Department of Natural Resources, Boulder Junction, WI 54512, USA

Abstract

Climate change is leading to shifts in not only the average timing of phenological events, but also their variance and predictability. Increasing phenological variability creates a stochastic environment that is critically understudied, particularly in aquatic ecosystems. We provide a perspective on the possible implications for increasingly unpredictable aquatic habitats, including more frequent trophic asynchronies and altered hydrologic regimes, focusing on ice-off phenology in lakes. Increasingly frequent phenological extremes may limit the ability of organisms to optimize traits required to adapt to a warming environment. Using a unique, long-term ecological dataset on Escanaba Lake, WI, USA, as a case study, we show that the average date of ice-off is shifting earlier and becoming more variable, thus altering limnological conditions and yielding uncoupled food web responses with ramifications for fish spawn timing and recruitment success. A genes-to-ecosystems understanding of the responses of aquatic communities to increasingly variable phenology is needed. Our perspective suggests that management for diversity, at the intra- and interspecific levels, will become paramount for conserving resilient aquatic ecosystems.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3