Effects of land use on summer thermal regimes in critical salmonid habitats of the Pacific Northwest

Author:

Kovach Ryan P.1,Muhlfeld Clint C.2,Al-Chokhachy Robert3,Ojala Jeffrey V.4,Archer Eric K.4

Affiliation:

1. US Geological Survey, Northern Rocky Mountain Science Center, Missoula, MT 59802, USA.

2. US Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT 59936, USA.

3. US Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715, USA.

4. US Forest Service, PIBO Monitoring Program, Logan, UT 84321, USA.

Abstract

The effect of climate change on stream temperature regimes is of significant concern to natural resource managers focused on protecting cold-water-dependent species. Nevertheless, understanding of how human land-use activities may act to exacerbate the effects of climate change on stream temperature regimes is limited. Using extensive stream temperature data with high-resolution climate and habitat data, we quantified how land management activities are related to summer stream temperatures across the Pacific Northwest, USA. We then described the distribution of land management practices influencing summer thermal regimes relative to the distribution of salmonid fish species of conservation concern. After accounting for climatic and geophysical variation, we detected a strong relationship between livestock grazing and summer thermal regimes. Maximum, average, and diel variation in water temperature was greater where livestock grazing was present. Livestock grazing was widespread, occurring in 43%–100% of sites supporting salmonid species of conservation concern. Thus, current land management practices may be intensifying the effects of ongoing climate change in freshwater habitats, acting to further threaten cold-water fishes of conservation concern.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3