A Bayesian hierarchical model of postlarval delta smelt entrainment: integrating transport, length composition, and sampling efficiency in estimates of loss

Author:

Smith William E.1,Newman Ken B.2,Mitchell Lara2

Affiliation:

1. United States Fish and Wildlife Service, Bay-Delta Office, Sacramento, California, USA.

2. United States Fish and Wildlife Service, Lodi Office, Lodi, California, USA.

Abstract

Hydrodynamic models have been used to estimate rates of ichthyoplankton transport across marine and estuarine environments and subsequent geographic isolation of a portion of the population (i.e., entrainment). Combining simulated data from hydrodynamic models with data from fish populations can provide more information, including estimates of regional abundance. Entrainment of postlarval delta smelt (Hypomesus transpacificus), a threatened species endemic to California’s Sacramento–San Joaquin Delta, caused by water export operations, was modeled using a Bayesian hierarchical model. The model was fit using data spanning years 1995–2015 from multiple sources: hydrodynamic particle tracking, fish length composition, mark–recapture, and count data from entrainment monitoring. Estimates of the entrainment of postlarval delta smelt ranged from 10 (SD = 23) in May 2006 to 561 791 (SD = 246 423) in May 2002. A simulation study indicated that all model parameters were estimable, but errors in transport data led to biased estimates of entrainment. Using only single data sources rather than integration through hierarchical modeling would have underestimated uncertainty in entrainment estimates or resulted in bias if transport, survival, or sampling efficiency were unaccounted for.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3