Target-based catch-per-unit-effort standardization in multispecies fisheries

Author:

Okamura Hiroshi1,Morita Shoko H.2,Funamoto Tetsuichiro3,Ichinokawa Momoko1,Eguchi Shinto4

Affiliation:

1. National Research Institute of Fisheries Science, Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa, Yokohama, Kanagawa 236-8648, Japan.

2. Hokkaido National Fisheries Research Institute, Fisheries Research and Education Agency, 2-2 Nakanoshima, Toyohira-ku, Sapporo, Hokkaido 062-0922, Japan.

3. Hokkaido National Fisheries Research Institute, Fisheries Research and Education Agency, 116 Katsurakoi, Kushiro, Hokkaido 085-0802, Japan.

4. The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan.

Abstract

Standardized catch per unit effort (CPUE) is a fundamental component of fishery stock assessment. In multispecies fisheries, catchability can differ depending on which species is being targeted, and so the yearly trend extracted from the standardized CPUE is likely to be biased. We have, therefore, developed a method for predicting the unobserved variable related to targeted species from among multispecies composition data using a mixture regression model for the transformed residuals. In contrast with traditional methods, the proposed method predicts the target variable in CPUE standardization without removing a subset of the data. Keeping the entire data set avoids information loss, and so CPUE standardization with the predicted target variable should yield an unbiased estimate of the yearly trend. Simple simulation tests demonstrate that our method outperforms traditional methods. We illustrate the use of our method by applying it to CPUE data on arabesque greenling (Pleurogrammus azonus) caught in multispecies trawl fisheries in Hokkaido, Japan.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Reference37 articles.

1. Definition of a directed fishing effort in a mixed-species trawl fishery, and its impact on stock assessments

2. Bishop, C.M. 2006. Pattern recognition and machine learning. Springer, New York.

3. Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions

4. Buckland, S.T., Rexstad, E.A., Marques, T.A., and Oedekoven, C.S. 2015. Distance sampling methods and applications. Springer, New York.

5. Burnham, K.P., and Anderson, D.R. 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3