Using autonomous video to estimate the bottom-contact area of longline trap gear and presence–absence of sensitive benthic habitat

Author:

Doherty Beau11,Johnson Samuel D.N.11,Cox Sean P.11

Affiliation:

1. Quantitative Fisheries Research Group, School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.

Abstract

Bottom longline hook and trap fishing gear can potentially damage sensitive benthic areas (SBAs) in the ocean; however, the large-scale risks to these habitats are poorly understood because of the difficulties in mapping SBAs and in measuring the bottom-contact area of longline gear. In this paper, we describe a collaborative academic–industry–government approach to obtaining direct presence–absence data for SBAs and to measuring gear interactions with seafloor habitats via a novel deepwater trap camera and motion-sensing systems on commercial longline traps for sablefish (Anoplopoma fimbria) within SGaan Kinghlas – Bowie Seamount Marine Protected Area. We obtained direct presence–absence observations of cold-water corals (Alcyonacea, Antipatharia, Pennatulacea, Stylasteridae) and sponges (Hexactinellida, Demospongiae) at 92 locations over three commercial fishing trips. Video, accelerometer, and depth sensor data were used to estimate a mean bottom footprint of 53 m2 for a standard sablefish trap, which translates to 3200 m2 (95% CI = 2400–3900 m2) for a 60-trap commercial sablefish longline set. Our successful collaboration demonstrates how research partnerships with commercial fisheries have potential for massive improvements in the quantity and quality of data needed for conducting SBA risk assessments over large spatial and temporal scales.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3