Self-starting cumulative sum harvest control rule (SS-CUSUM-HCR) for status-quo management of data-limited fisheries

Author:

Pazhayamadom Deepak George1,Kelly Ciarán J.2,Rogan Emer1,Codling Edward A.3

Affiliation:

1. School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.

2. Marine Institute, Rinville, Oranmore, Galway, Ireland.

3. Department of Mathematical Sciences, University of Essex, United Kingdom.

Abstract

We demonstrate a harvest control rule based on the self-starting cumulative sum (SS-CUSUM) control chart that can maintain a fish stock at its starting (status-quo) level. The SS-CUSUM is an indicator monitoring tool commonly used in quality control engineering and does not require a long time series or predefined reference point for detecting temporal trends. The reference points in SS-CUSUM are calibrated in the form of running means that are updated on an ongoing basis when new observations become available. The SS-CUSUM can be initiated with as few as two observations in the time series and can be applied long before many other methods, soon after initial data become available. A wide range of stock indicators can be monitored, but in this study, we demonstrate the method using an equally weighted sum of two indicators: a recruitment indicator and a large fish indicator from a simulated fishery. We assume that no life history data are available other than 2 years of both indicator data and current harvest levels when the SS-CUSUM initiates. The signals generated from SS-CUSUM trigger a harvest control rule (SS-CUSUM-HCR), where the shift that occurs in the indicator time series is computed and is used as an adjustment factor for updating the total allowable catch. Our study shows that the SS-CUSUM-HCR can maintain the fish stock at its starting status-quo level (even for overfished initial states) but has limited scope if the fishery is already in an undesirable state such as a stock collapse. We discuss how the SS-CUSUM approach could be adapted to move beyond a status-quo management strategy, if additional information on the desirable state of the fishery is available.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3