Population connectivity of adfluvial and stream-resident Lahontan cutthroat trout: implications for resilience, management, and restoration

Author:

Campbell Teresa1,Simmons James1,Sáenz Jessica2,Jerde Christopher L.3,Cowan William2,Chandra Sudeep1,Hogan Zeb1

Affiliation:

1. University of Nevada, Reno, Global Water Center and Biology Department, 1664 N. Virginia Street, Reno, NV 89557-0314, USA.

2. Summit Lake Paiute Tribe, 1001 Rock Blvd., Sparks, NV 89431, USA.

3. University of California, Santa Barbara, Marine Science Institute, CA 93106, USA.

Abstract

Population connectivity between resident and migratory cutthroat trout (Oncorhynchus clarkii ssp.) is understudied, but has implications for population viability and management. We examined evidence for stream residency, studied the spatial patterns of stream use by adfluvial and stream-resident trout, and measured migration rates with changing stream depth for Lahontan cutthroat trout (Oncorhynchus clarkii henshawi) in the Summit Lake Basin, Nevada (USA). Passive integrated transponder technology and a fry trap were used to track fish movements and identify the distribution of resident and adfluvial trout. Stream residents were distributed throughout the network. Adfluvial spawners concentrated in lower reaches, but also migrated up to 12.9 km. Adfluvial juveniles migrated to the lake from lower reaches and from upstream of adfluvial spawners. High stream depths coincided with more adfluvial juveniles migrating to the lake and more adfluvial spawners moving into the stream, which led to more accessing the upper watershed. This work shows that connectivity is central to adfluvial–resident Lahontan cutthrout trout population dynamics and may lead to increased probability of persistence — a characteristic of these isolated, threatened trout populations.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3