Mercury bioaccumulation increases with latitude in a coastal marine fish (Atlantic silverside, Menidia menidia)

Author:

Baumann Zofia1,Mason Robert P.1,Conover David O.2,Balcom Prentiss3,Chen Celia Y.4,Buckman Kate L.4,Fisher Nicholas S.5,Baumann Hannes1

Affiliation:

1. Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA.

2. University of Oregon, 1266 University of Oregon, Eugene, OR 97403, USA.

3. Harvard Paulson School of Engineering and Applied Sciences, 58 Oxford Street, Cambridge, MA 02138, USA.

4. Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.

5. School of Marine and Atmospheric Sciences, Stony Brook University, Dana Hall, Stony Brook, NY 11794-5000, USA.

Abstract

Human exposure to the neurotoxic methylmercury (MeHg) occurs primarily via the consumption of marine fish, but the processes underlying large-scale spatial variations in fish MeHg concentrations [MeHg], which influence human exposure, are not sufficiently understood. We used the Atlantic silverside (Menidia menidia), an extensively studied model species and important forage fish, to examine latitudinal patterns in total mercury (Hg) [Hg] and [MeHg]. Both [Hg] and [MeHg] significantly increased with latitude (0.014 and 0.048 μg MeHg·g dry weight−1 per degree of latitude in juveniles and adults, respectively). Four known latitudinal trends in silverside traits help explain these patterns: latitudinal increase in MeHg assimilation efficiency, latitudinal decrease in MeHg efflux, latitudinal increase in weight loss due to longer and more severe winters, and latitudinal increase in food consumption as an adaptation to decreasing length of the growing season. Given the absence of a latitudinal pattern in particulate MeHg, a diet proxy for zooplanktivorous fish, we conclude that large-scale spatial variation in growth is the primary control of Hg bioaccumulation in this and potentially other fish species.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3