Persistence of native riverine fishes downstream from two hydropower dams with contrasting operations

Author:

Freeman Mary C.1ORCID,Albanese Brett2,Bumpers Phillip M.3ORCID,Hagler Megan M.3,Nagy Andrew J.3ORCID,Freeman Byron J.4ORCID,Wenger Seth J.3ORCID

Affiliation:

1. U. S. Geological Survey, Eastern Ecological Science Center, Athens, GA, USA

2. Georgia Department of Natural Resources, Social Circle, GA, USA

3. Odum School of Ecology and River Basin Center, University of Georgia, Athens, GA, USA

4. Georgia Museum of Natural History, University of Georgia, Athens, GA, USA

Abstract

Identifying hydropower dam operations that lessen detrimental effects on downstream fauna could inform conservation strategies for native fishes. We compared occurrence of native fishes in 20 shoal habitats downstream from two differently operated hydropower dams in the Coosa River system, Georgia, USA. Species richness averaged 7 and 11, respectively, in surveys downstream from (1) a hydropeaking dam and (2) a dam with a re-regulation structure that stabilized downstream flows. In contrast, surveys in two nearby reference communities averaged 19 and 24 species. Species persisting downstream from the dams tended toward water-column orientation, larger body size, longer life span, and greater prevalence in tributary stream collections, compared with missing or rarely captured species. We observed no evidence of recovery toward reference conditions when operations were paused for 28 months at the hydropeaking dam. Our observations suggest that (1) strongly contrasting dam operations can result in similar alterations to native fish assemblages, potentially reflecting effects of thermal alteration by hypolimnetic water release, and (2) periodic dispersal from tributary streams may enhance fish persistence in flow-altered rivers.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3