Linking ecosystem processes to consumer growth rates: gross primary productivity as a driver of freshwater fish somatic growth in a resource-limited river

Author:

Hansen Lindsay E.12ORCID,Yackulic Charles B.1ORCID,Dickson Brett G.23ORCID,Deemer Bridget R.1ORCID,Best Rebecca J.2ORCID

Affiliation:

1. U.S. Geological Survey, Southwest Biological Science Center, Grand Canyon Monitoring and Research Center, 2255 N. Gemini Dr., Flagstaff, AZ 86001, USA

2. School of Earth and Sustainability, Northern Arizona University, 524 Knoles Drive, Flagstaff, AZ 86011, USA

3. Conservation Science Partners, Inc., 11050 Pioneer Trail, Suite 202, Truckee, CA 96161, USA

Abstract

Individual growth can exert strong control on population dynamics but is constrained by resource acquisition rates. Difficulty in accurately quantifying resource availability over large spatial extents and at high temporal frequencies often limits attempts to understand the extent to which resources limit individual growth. Daily estimates of stream metabolism, including gross primary productivity (GPP), are increasingly available but have not, to our knowledge, been linked to fish growth. Here we examine how environmental variables such as GPP, water temperature, turbidity, and high-flow releases from a dam are linked to spatiotemporal variation in the growth of flannelmouth sucker ( Catostomus latipinnis) in the Colorado River within the Grand Canyon. We fit state-space growth models to 6 years of mark–recapture data collected in four river reaches spanning 300 river kilometers. Consistent with past research in this system, we find that all four environmental variables influence growth in length of a native primary consumer fish. GPP and temperature have a positive influence on growth, while turbidity and high-flow events have a negative influence. Water temperature is the dominant driver of spatiotemporal variation in growth, while the link between high-frequency GPP and fish growth is relatively novel. Fish growth is likely to be linked to stream metabolism in other systems where overall productivity, not the quality of primary producers, limits the food webs that support fish growth.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3