Spatiotemporal modeling of bycatch data: methods and a practical guide through a case study in a Canadian Arctic fishery

Author:

Yan Yuan1,Cantoni Eva2,Field Chris1,Treble Margaret3,Flemming Joanna Mills1

Affiliation:

1. Department of Mathematics & Statistics, Dalhousie University, Halifax, NS B3H 4R2, Canada.

2. Research Center for Statistics and Geneva School of Economics and Management, University of Geneva, Geneva, Switzerland.

3. Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada.

Abstract

Excess bycatch of marine species during commercial fishing trips is a challenging problem in fishery management worldwide. The aims of this paper are twofold: to introduce methods and provide a practical guide for spatiotemporal modelling of bycatch data, as well as to apply these methods and present a thorough examination of Greenland shark (Somniosus microcephalus) bycatch weight in a Canadian Arctic fishery. We introduce the spatially explicit two-part model and offer a step by step guide for applying the model to any form of bycatch data, from data cleaning, exploratory data analysis, variable and model selection, model checking, to results interpretation. We address various problems encountered in decision making and suggest that researchers proceed cautiously and always keep in mind the aims of the analysis when fitting a spatiotemporal model. Results identified spatiotemporal hotspots and indicated month and gear type were key drivers of high bycatch. The importance of onboard observers in providing robust bycatch data was also evident. These findings will help to inform conservation strategies and management decisions, such as limiting access to spatial hotspots, seasonal closures and gear restrictions.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3