Digital holography for real-time non-invasive monitoring of larval fish at power plant intakes

Author:

Sanborn Delaney12,Base Alexis34,Garavelli Lysel5,Barua Ranjoy34,Hong Jiarong12,Nayak Aditya R.34ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA

2. St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, MN, USA

3. Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL, USA

4. Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA

5. Pacific Northwest National Laboratory, Seattle, WA, USA

Abstract

Effective evaluation of technological and operational approaches to reduce entrainment of marine organisms at cooling water intake structures (CWIS) requires accurate organism-sensing systems. Current detection methods lead to large temporal data gaps, require tedious manual analysis, and are fatal to organisms. Here, we describe integrating deep learning with a non-lethal, non-intrusive imaging method—digital holography—to rapidly detect fish larvae. Laboratory experiments demonstrated that the instrument could successfully image fish larvae at flow rates exceeding ranges seen in CWIS. Holograms of two fish larvae species, in the presence of bubbles and detritus, were collected to build a large database for training a lightweight convolutional neural network. The model achieves 97% extraction accuracy in quantifying larvae, and distinguishing them from other particles, including detritus and bubbles, when applied to a dataset of manually classified images, exceeding previous metrics for non-lethal, accurate, and real-time detection. These results demonstrate the potential of in situ holographic imaging for monitoring endangered larval fish species at power plant intake structures, and for high-fidelity, real-time applications in monitoring aquatic ichthyoplankton.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3