Bycatch reduction in the deep-water shrimp (Pandalus borealis) trawl fishery by increasing codend mesh openness

Author:

Jacques Nadine12,Pettersen Hermann1,Cerbule Kristine12,Herrmann Bent123,Ingólfsson Ólafur Arnar4,Sistiaga Manu45,Larsen Roger B.1,Brinkhof Jesse1,Grimaldo Eduardo12,Brčić Jure6,Lilleng Dagfinn7

Affiliation:

1. UiT The Arctic University of Norway, Tromsø, Norway.

2. Department of Fishing Gear Technology, SINTEF Ocean, Trondheim, Norway.

3. DTU Aqua, Denmark Technical University, Hirtshals, Denmark.

4. Fish capture division, Norwegian Institute of Marine Research, Bergen, Norway.

5. NTNU Norwegian University of Science and Technology, Otto Nielsens veg 10, N-7491 Trondheim, Norway.

6. Department of Marine Studies, University of Split, Split, Croatia.

7. Norwegian Directorate of Fisheries, Postbox 185 Sentrum, 5804 Bergen, Norway.

Abstract

In most trawl fisheries, drag forces tend to close the meshes in large areas of diamond mesh codends, negatively affecting their selective potential. In the Barents Sea deep-water shrimp (Pandalus borealis) trawl fishery, selectivity is based on a sorting grid followed by a diamond mesh codend. However, the retention of juvenile fish as well as undersized shrimp is still a problem. In this study, we estimated the effect of applying different codend modifications, each aimed at affecting codend mesh openness and thereby selectivity. Changing from a 4-panel to a 2-panel construction of the codend did not affect size selectivity. Shortening the lastridge ropes of a 4-panel codend by 20% resulted in minor reductions for juvenile fish bycatch, but a 45% reduction of undersized shrimp was observed. Target-size catches of shrimp were nearly unaffected. When the codend mesh circumference was reduced while simultaneously shortening the lastridge ropes, the effect on catch efficiency for shrimp or juvenile fish bycatch was marginal compared to a 4-panel codend design with shortened lastridge ropes.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3