Affiliation:
1. Corvallis Research Laboratory, Oregon Department of Fish and Wildlife, 28655 Highway 34, Corvallis, OR 97333, USA.
2. Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA.
Abstract
The distribution, quality, and connectivity of instream habitat can influence adult salmon occupancy and abundance patterns and alter population dynamics. In this study, we evaluated the relationships between adult coho salmon (Oncorhynchus kisutch) occupancy and abundance with instream habitat conditions, including measures of spawning gravel, habitat complexity, and juvenile rearing habitat. We used corresponding adult salmon spawning and instream habitat data collected within coastal Oregon watersheds as part of a long-term monitoring program. We modeled two processes as a function of habitat characteristics: the number of coho salmon when they were present and the occupancy probabilities of coho salmon. The results from both submodels were then combined into an estimate of total abundance at each site. Adult coho salmon occupancy was best predicted by the capacity of the habitat to support parr during the winter, complex pools, percent bedrock, and site distance to the ocean. Although lacking the predictive capacity of the occupancy model, increases in adult coho counts at sites were also influenced by the site distance to the ocean, and there is evidence that both percent gravel and complex pools may also be valuable predictors. By taking advantage of long-term datasets with broad spatial range, using an integrative approach across coho salmon life stages, and utilizing innovative Bayesian modeling techniques, this study is a unique approach to understanding a complicated ecological narrative. Combined, our results indicate the spatial distribution and proximity of spawning and rearing habitats may maximize productivity for coho salmon in coastal Oregon watersheds.
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献