Ecological consequences of Great Lakes salmon subsidies for stream-resident brook and brown trout

Author:

Hermann Nathan T.1,Chaloner Dominic T.1,Gerig Brandon S.2,Lamberti Gary A.1

Affiliation:

1. Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.

2. Department of Biology, Northern Michigan University, Marquette, MI 49855, USA.

Abstract

Introduced Pacific salmon (Oncorhynchus spp.) deliver novel, pulsed resource subsidies to Great Lakes streams. We explored interactions between native brook trout (Salvelinus fontinalis) and non-native brown trout (Salmo trutta) in the context of this resource pulse. Diets surveyed before and during salmon spawning showed that, regardless of species, trout consumed 4.5-fold more biomass during than before salmon runs. Brook trout grew more quickly than brown trout under controlled feeding regimes due, in part, to their higher food conversion efficiency of 36% compared with 21%. Bioenergetics model simulations explored the influence of temperature on the exploitation of resource pulses and found 35% lower growth rates and increased gorging at colder temperatures. Overall, we found evidence that brook trout and brown trout foraging and growth are modulated by the salmon resource pulse, especially through gorging on eggs. However, these species exhibit distinct physiological adaptations and environmental preferences that may influence their ultimate capacity to exploit resource pulses. The effects of environmental conditions and salmon subsidies on stream-resident trout have broader consequences for fisheries management and conservation efforts.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3