Linking demographic transitions to population dynamics in a fluctuating environment

Author:

Gatto John V.12,Kline Jeffrey L.3,Loftus William F.4,Trexler Joel C.15

Affiliation:

1. Institute of Environment, Florida International University, Miami, FL 33199, USA.

2. Great Rivers Field Station, Illinois Natural History Survey, University of Illinois Urbana-Champaign, Alton, IL 62002, USA.

3. South Florida Natural Resources Center, Everglades National Park, 40001 State Road 9336, Homestead, FL 33034, USA.

4. Aquatic Research & Communication, LLC, 5600 Dominica St., Vero Beach, FL 32967, USA.

5. Coastal and Marine Laboratory, Florida State University, St. Teresa, FL 32358.

Abstract

Recruitment has been linked to decreases in the ratio of age-specific mortality (M′) to mass-specific growth (G′), and year-class strength may be predicted by the age when M′/G′ = 1. Hydrological stress adversely affects these parameters for species inhabiting floodplains; however, the relationship between M′ and G′ in hydrologically variable environments is poorly understood. We evaluated age-specific mortality for six species from a 20-year time series and growth curves from otolith length-at-age data. We assessed the effect of hydrology on the transitional age (age M′/G′ = 1) at 21 sites representing a hydrological gradient. Disturbance intensity influenced age-specific mortality but had no effect on mass-specific growth. The transitional age was inversely correlated with annual density, but weakly associated with population biomass. Hydrological disturbance shifted the transitional age to older ages, reducing recruitment overall. We demonstrated that the M′/G′ transition was affected adversely by hydrological stress and can be applied to a diverse group of taxa. Growth, survivorship, and the transitional age should be evaluated to improve population modelling efforts used to predict the influence of future restoration actions.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3