Affiliation:
1. Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami, Miami, FL 33149, USA.
Abstract
Benthic marine populations are often replenished by a combination of larvae from local and distant sources. To promote retention of locally spawned larvae in strong, unidirectional boundary current systems, benthic marine organisms must utilize biophysical mechanisms to minimize advective loss. We examined patterns in larval fish abundance, age distribution, and assemblage in relation to environmental variables in the Straits of Florida to better understand the factors underlying larval transport and retention in a boundary current system. Depth was the primary structuring element; larval assemblages were more distinct across vertical distances of tens of metres than they were over horizontal distances of tens to hundreds of kilometres. However, depth distributions were species-specific, and larval assemblages inside and outside of mesoscale eddies were distinct. Age distributions were consistent with the hypothesis that mesoscale eddies provide opportunities for retention. Our data indicate that the effect of eddies on larval retention is likely taxon-specific and temporally variable, as synchronization of reproductive output, larval distribution, and timing of eddy passage are prerequisite to entrainment and subsequent retention of locally spawned larvae.
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献