Heterogeneities in sol–gel-derived paramagnetics-doped forsterites and willemites — Electron microprobe analysis and stretched-exponential 29Si MAS NMR spin–lattice relaxation studies

Author:

Hartman J Stephen,Narayanan Arjun,Rigby Suzie S,Sliwinski David R,Halden Norman M,Bain Alex D

Abstract

We report the synthesis and analysis of sol–gel-derived samples of forsterite (Mg2SiO4) and willemite (Zn2SiO4), doped with paramagnetic Cu2+, Ni2+, and Co2+, at a range of dopant concentrations. Electron probe microanalysis and backscattered electron imaging show the presence of major micrometre-scale heterogeneities in the distribution of paramagnetic centres. Despite the inhomogeneities, the 29Si NMR spin–lattice relaxation behaviour is well-behaved and is consistent with the stretched-exponential expression Mz(t) = Mz(∞){1 – a exp[–(t/T′)n]}. The exponent n is 0.5 within the experimental error in some samples. This value is consistent with relaxation by immobile isolated paramagnetic impurities with negligible 29Si spin diffusion from the impurity centres, but careful curve fitting confirms that n is significantly larger than 0.5 in other samples. Relaxation efficiency is highly dependent on the dopant ion and its concentration. Although the purely empirical stretched-exponential function does not provide a unique physical picture, it is noteworthy that it is sufficiently robust to describe spin–lattice relaxation even in highly inhomogeneous systems. Spin–lattice relaxation is a useful probe of paramagnetics-doped solid samples, but NMR does not provide information on homogeneity. Careful sample characterization on the micrometre scale is highly desirable, as a complement to NMR studies.Key words: MAS NMR, spin–lattice relaxation, 29Si, forsterite, willemite, stretched-exponential relaxation, sol–gel, minor-component heterogeneity, backscattered electron analysis.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3