Author:
Hartman J Stephen,Narayanan Arjun,Rigby Suzie S,Sliwinski David R,Halden Norman M,Bain Alex D
Abstract
We report the synthesis and analysis of sol–gel-derived samples of forsterite (Mg2SiO4) and willemite (Zn2SiO4), doped with paramagnetic Cu2+, Ni2+, and Co2+, at a range of dopant concentrations. Electron probe microanalysis and backscattered electron imaging show the presence of major micrometre-scale heterogeneities in the distribution of paramagnetic centres. Despite the inhomogeneities, the 29Si NMR spin–lattice relaxation behaviour is well-behaved and is consistent with the stretched-exponential expression Mz(t) = Mz(∞){1 – a exp[–(t/T′)n]}. The exponent n is 0.5 within the experimental error in some samples. This value is consistent with relaxation by immobile isolated paramagnetic impurities with negligible 29Si spin diffusion from the impurity centres, but careful curve fitting confirms that n is significantly larger than 0.5 in other samples. Relaxation efficiency is highly dependent on the dopant ion and its concentration. Although the purely empirical stretched-exponential function does not provide a unique physical picture, it is noteworthy that it is sufficiently robust to describe spin–lattice relaxation even in highly inhomogeneous systems. Spin–lattice relaxation is a useful probe of paramagnetics-doped solid samples, but NMR does not provide information on homogeneity. Careful sample characterization on the micrometre scale is highly desirable, as a complement to NMR studies.Key words: MAS NMR, spin–lattice relaxation, 29Si, forsterite, willemite, stretched-exponential relaxation, sol–gel, minor-component heterogeneity, backscattered electron analysis.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献