His-391 of β-galactosidase (Escherichia coli) promotes catalyes by strong interactions with the transition state

Author:

Huber Reuben E,Hlede Isabel Y,Roth Nathan J,McKenzie Kyle C,Ghumman Kiran K

Abstract

His-391 of β-galactosidase (Escherichia coli) was substituted by Phe, Glu, and Lys. Homogeneous preparations of the substituted enzymes were essentially inactive unless very rapid purifications were performed, and the assays were done immediately. The inactive enzymes were tetrameric, just like wild-type β-galactosidase and their fluorescence spectra were identical to the fluorescence spectrum of wild-type enzyme. Analyses of two of the substituted enzymes that were very rapidly purified to homogeneity and rapidly assayed while they were still active (at only a few substrate concentrations so that the data could be rapidly obtained), showed that the kinetic values were very similar to the values obtained with the same enzymes that were only partially purified. This showed that the kinetics were not affected by the degree of purity and allowed kinetic analyses with partially purified enzymes so that large numbers of points could be used for accuracy. The data showed that His-391 is a very important residue. It interacts strongly with the transition state and promotes catalysis by stabilizing the transition state. Activation energy differences (ΔΔGs‡), as determined by differences in the kcat/Kmvalues, indicated that substitutions for His-391 caused very large destabilizations (22.8-35.9 kJ/mol) of the transition state. The importance of His-391 for transition state stabilization was confirmed by studies that showed that transition state analogs are very poor inhibitors of the substituted enzymes, while inhibition by substrate analogs was only affected in a small way by substituting for His-391. The poor stabilities of the transition states caused significant decreases of the rates of the glycolytic cleavage steps (galactosylation, k2). Degalactosylation (k3) was not decreased to the same extent.Key words: β-galactosidase, mechanism, transition state, binding, histidine, catalysis.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3