Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia

Author:

Tisserant B.,Gianinazzi S.,Gianinazzi-Pearson V.

Abstract

The rapid development of an efficient root system resulting from arbuscular mycorrhiza formation is essential to the successful establishment of many plant species. We have analysed root system development and used histochemical staining to define relationships between lateral root order dynamics, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus Glomus fasciculatum (Thaxter sensu Gerdeman) Gerd & Trappe amend. Walker and Koske, in a woody plant species Platanus acerifolia Willd. Arbuscular mycorrhiza induced modifications in root system development in P. acerifolia, compared with nonmycorrhizal root systems. Third-order lateral roots dominated in arbuscular mycorrhizal plants, while second-order laterals were most numerous in nonmycorrhizal systems. Arbuscular mycorrhiza colonization was closely related to the appearance of different root orders; the most active mycelium (characterized by fungal succinate dehydrogenase and alkaline phosphatase activities) was mainly localized in newly formed lateral roots. Nine weeks after inoculation with G. fasciculatum the proportion of alkaline phosphatase-active mycelium strongly decreased in all root orders, and this was related to an increased phosphorus content of the host plant. The dynamics of development of the arbuscular mycorrhizal fungus and the possible regulation of its activity by the host plant are discussed. Keywords: arbuscular mycorrhiza, fungal enzyme, root system morphology, Platanus acerifolia, Glomus fasciculatum.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3