Abstract
Escherichia coli strains are able to cause intestinal (enteritis, diarrhoeal diseases) and extraintestinal (urinary tract infections, sepsis, meningitis) infections. Most pathogenic E. coli strains produce specific fimbrial adhesins, which represent essential colonization factors: intestinal E. coli strains very often carry transferable plasmids with gene clusters specific for fimbrial adhesins, like K88 and K99, or colonization factor antigens (CFA) I and II. In contrast, the fimbrial gene clusters of extraintestinal E. coli strains, such as P, S, or F1C fimbriae, are located on the chromosomes. The fimbrial adhesin complexes consist of major and minor subunit proteins. Their binding specificity can generally be assayed in hemagglutination tests. In the case of fimbrial adhesins of intestinal E. coli strains, the major subunit proteins preferentially represent the hemagglutinating adhesins, whereas minor subunit proteins are the hemagglutinins of extraintestinal E. coli strains. Recently "alternative" adhesin proteins were identified, which have the capacity to bind to eukaryotic structures different from the receptors of the erythrocytes. Fimbrial adhesins are not constitutively expressed but are stringently regulated on the molecular level. Extraintestinal E. coli wild-type strains normally carry three or more fimbrial adhesin determinants, which have the capacity to influence the expression of one another (cross talk). Furthermore the fimbrial gene clusters undergo phase variation, which seems to be important for their contribution to pathogenesis of E. coli. Key words: fimbriae, adhesins, Escherichia coli, pathogenicity.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
72 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献