Linear optical properties of a linear chain of interacting gold nanoparticles

Author:

Kheirandish Asef11,Javan Nasser Sepehri11,Mohammadzadeh Hosein11

Affiliation:

1. Department of Physics, University of Mohaghegh Ardabili, Ardabil, Iran.

Abstract

In a Drude-like model for the conduction electrons of metal nanoparticles (MNPs) in a periodic linear chain, considering dipole-dipole interactions of adjacent particles, an analytical expression is derived for each particle permittivity for two different polarizations of incident light: parallel with and perpendicular to the chain line. A numerical analysis is carried out for a chain including 10 identical gold nanoparticles (NPs) for two different sizes of NPs and two different host media: air and glass. It is shown that in the parallel case of polarization, interaction of NPs leads to a substantial increase in the extinction cross section and the redshift of the surface plasmon resonance (SPR) wavelength. In comparison with the linear properties of a single NP, the second and penultimate particles have the most increase in the extinction cross section and SPR wavelength displacement while the first and last particles experience the least variations due to the mutual interactions. For the perpendicular polarization, inversely, the dipolar coupling causes a decrease in extinction cross section of all particles and the blue-shift of SPR wavelength. For the parallel polarization, the absolute values of the real and imaginary parts of complex permittivity of each MNP decrease in comparison with the single particle case while they increase for the perpendicular state of polarization.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3