Biochemical changes in progressive muscular dystrophy. XIV. Skeletal muscle myosin mRNA translatability in dystrophic mice

Author:

Srivastava U. S.,Sugden E. A.,Majumdar P. K.,Thakur M. L.,Bhatnagar G. M.

Abstract

Variations in the content and translatability of the poly(A)+ RNA and mRNA molecules coding for myosin (M) were studied in the hind leg muscles of genetically dystrophic mice. The poly(A)+ RNA content of total skeletal muscle failed to increase normally during progression of the disease. M mRNA, isolated from dystrophic murine muscle poly(A)+ RNA, was mostly found to be associated with the 26S RNA species. The translation of M mRNA in an in vitro heterologous wheat germ system was lower at 8 and 16 weeks in the dystrophic group as compared with the controls. Analysis of the translation products via sodium dodecyl sulfate – polyacrylamide gel electrophoresis, autoradiography, and densitometric autoradiographic tracing demonstrated the gradual disappearance of a protein band corresponding to M, the major component of skeletal muscle. cDNA was synthesized, using M mRNA that was isolated and purified from normal and dystrophic mouse muscle as a template. Total radioactivity was measured in some cDNA fractions produced from normal and dystrophic mouse muscle, while other fractions were utilized for separation and sizing of cDNA by disc gel electrophoresis. The cDNA from normal muscle was hybridized with M mRNA from normal and 16-week-old dystrophic mouse muscles. The cDNA probe, hybridization experiments, and studies involving the content and synthesis of M mRNA suggest that murine muscular dystrophy elicited a shorter species of mRNA or shorter sequences of the same species of mRNA coding for M. Not all poly(A)+ mRNA sequences coding for M, found in control mice, were present in their dystrophic counterparts. In conclusion, it appears that murine muscular dystrophy produces a shorter species of pre-M mRNA via decreased polynucleotide elongation.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3