Simplified seismic code design procedure for friction-damped steel frames

Author:

Fu Yaomin,Cherry Sheldon

Abstract

This paper describes the development of a proposed seismic design procedure for friction-damped steel structures, which employs the lateral force provisions used in many modern building codes. Closed-form expressions are first derived that relate the normalized response of a single degree of freedom friction-damped system with the system parameters, such as bracing stiffness ratio, damper slip ratio, and frame member ductility. A parametric analysis is then used to reveal that the seismic displacement of a friction-damped frame can be controlled by combining the frame stiffness with the bracing stiffness of the friction damper component, while the seismic force can be controlled by the damper slip force. A force modification factor (equivalent to the code R-factor) and displacement estimate for a friction-damped system are next determined. The single degree of freedom results are subsequently used to develop expressions for dealing with the multi degree of freedom situation, which permits the seismic lateral force design procedure adopted by many current building codes to be applied to friction-damped systems. The proposed procedure allows the frame response to be controlled so that the displacement can be limited to small magnitudes and the overall structural shape to an essentially straight-line deformation. Design examples illustrate that friction-damped frame systems are economical and offer a better overall response performance than that provided by conventional systems under the design earthquake.Key words: passive energy dissipation system, friction damper, steel frame, design procedure, static analysis.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3