Deterministic chaos, fractals, and quantumlike mechanics in atmospheric flows

Author:

Selvam A. Mary

Abstract

The complex spatiotemporal patterns of atmospheric flows that result from the cooperative existence of fluctuations ranging in size from millimetres to thousands of kilometres are found to exhibit long-range spatial and temporal correlations. These correlations are manifested as the self-similar fractal geometry of the global cloud cover pattern and the inverse power-law form for the atmospheric eddy energy spectrum. Such long-range spatiotemporal correlations are ubiquitous in extended natural dynamical systems and are signatures of deterministic chaos or self-organized criticality. In this paper, a cell dynamical system model for atmospheric flows is developed by consideration of microscopic domain eddy dynamical processes. This nondeterministic model enables formulation of a simple closed set of governing equations for the prediction and description of observed atmospheric flow structure characteristics as follows. The strange-attractor design of the field of deterministic chaos in atmospheric flows consists of a nested continuum of logarithmic spiral circulations that trace out the quasi-periodic Penrose tiling pattern, identified as the quasi-crystalline structure in condensed matter physics. The atmospheric eddy energy structure follows laws similar to quantum mechanical laws. The apparent waveparticle duality that characterizes quantum mechanical laws is attributed to the bimodal phenomenological form of energy display in the bidirectional energy flow that is intrinsic to eddy circulations, e.g., formation of clouds in updrafts and dissipation of clouds in downdrafts that result in the observed discrete cellular geometry of cloud structure.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3