ANALYSIS OF PHYSICAL ADSORPTION ISOTHERMS ON HETEROGENEOUS SURFACES AT VERY LOW PRESSURES

Author:

Hobson J. P.

Abstract

A method previously described for finding heterogeneous energy distributions ƒ(E) from physical adsorption isotherms is applied to experimental data for argon, nitrogen, and helium obtained in an ultrahigh vacuum apparatus in the pressure range [Formula: see text] Torr. The adsorbent was Pyrex and matching temperatures were 77.4, 90.2, and 4.2 °K for the three gases respectively. ƒ(E) was found to be asymmetric about a maximum energy whose location depended critically upon the magnitude of assumed adsorbate–adsorbate interaction (Q). However, the isotherms calculated at temperatures other than the matching temperature were insensitive to Q, and hence to the detailed form of the local isotherm. These calculated isotherms showed excellent agreement, not only with the data on Pyrex, but also with the data of several workers using various adsorbents and temperatures. The latter result suggests a similar adsorbing surface for all these adsorbents.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3