Collisional energy transfer in non-reactive systems

Author:

Forst Wendell,Xu Guo-Ying,Gidiotis Grigorios

Abstract

If the internal energy of target molecules highly dispersed in a heat bath is monitored as a function of time, their one-photon laser excitation and subsequent bulk collisional relaxation yields information only about energy transfer in the bulk system (a macroscopic time-dependent property). This paper discusses three special cases when [Formula: see text], the average energy transferred in a collision (a microscopic property) can be deduced from bulk relaxation data without knowledge of the collisional transition probability: (i) initial excitation is a δ function; (ii) relaxation of bulk average energy follows simple exponential law; or (iii) it is linear in time. The implications of exponential relaxation is that [Formula: see text], which is the first moment of the collisional transition probability, is a linear function of internal energy. These conclusions are illustrated using available laser relaxation data on azulene, benzene, and hexafluorobenzene, and are compared with similar data on toluene and two cycloheptatrienes. Some inconsistencies are noted, the probable origin of which is discussed.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3