Early changes in airway smooth muscle hyperresponsiveness

Author:

Jiang He,Rao Kang,Liu Xueliang,Halayko Andrew J.,Liu Gang,Stephens Newman L.

Abstract

To study asthmatic airway smooth muscle we developed a canine model of ragweed pollen sensitized, airway hyperresponsiveness because of the difficulties in obtaining human tissue. Tracheal and bronchial smooth muscles from sensitized dogs were shown to possess greater ability to shorten and higher maximum shortening velocity (Vo), both of which contribute to the excessive narrowing of airways typical of human asthma. However, maximum force production remained normal, demonstrating the dissociation between the behaviour of shortening and force. Because we found no evidence of inflammation, hypertrophy, or hyperplasia in the sensitized airway smooth muscles, we felt this is a model of early disease and should provide insight into early and perhaps primary pathogenetic mechanisms. Vo is known to be determined by actornyosin ATPase, which in smooth muscle is activated via phosphorylation of the 20-kDa myosin light chain (MLC20) by myosin light chain kinase (MLCK). Therefore, ATPase activity, MLC20 phosphorylation, and MLCK were investigated. Sensitized tracheal and bronchial smooth muscles showed significantly higher ATPase activity, and a higher level of MLC20 phosphorylation, resulting from increased MLCK activity, a consequence of the measured increase in total quantity of MLCK rather than in specific activity. Since MLCK is activated by binding with Ca2+–calmodulin complex, intracellular Ca2+ concentration and calmodulin activity were also assessed, but no difference was found between sensitized and control animals. Our study suggests that increased MLCK quantity may be the cause of airway hyperresponsiveness found in sensitized animals, and future investigation should be focused on depicting the reason for the elevated MLCK.Key words: airway hyperresponsiveness, smooth muscle, biophysics, biochemistry, early asthmatic changes.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3