Insights into the cell envelope of Paracoccus denitrificans, a member of the α-subdivision of purple bacteria, through studies of its lysozyme susceptibility

Author:

Wee Sechan,Wilkinson Brian J.

Abstract

Exponential-phase Paracoccus denitrificans cells grown in a complex medium are known to be lysozyme susceptible without pretreatment with outer membrane perturbing agents. Stationary-phase cells are more lysozyme resistant, but simple washing of these cells with moderate concentrations (154 mM) of monovalent inorganic cations (NaCl, KCl, or LiCl), or 100 mM Tris(hydroxymethyl)aminomethane-HCl (Tris–HCl) rendered them lysozyme susceptible. Subsequent washing with divalent cations reversed the enhanced lysozyme susceptibility. Cells grown in succinate–salts medium were not rendered lysozyme susceptible by NaCl washing. Supplementation of complex medium with various salts used in succinate–salts medium showed that Mg2+ and Ca2+ supplementation resulted in increased growth yields and in cells that were not rendered lysozyme susceptible by NaCl washing. Measurement of the Mg2+ and Ca2+ content of peptone and yeast extract revealed Mg2+ and Ca2+ were present at 50–80 and 15–30 μM concentrations, respectively, in complex medium. Omission of Ca2+ or reduction of Mg2+ from 810 to 50 μM in succinate–salts medium resulted in cells that became lysozyme susceptible after NaCl washing. Incubation of cells grown in succinate–salts medium with Tris–HCl – ethylenediaminetetraacetate – sucrose caused them to become lysozyme susceptible, indicating that their lack of lysozyme susceptibility was due to a more effective outer membrane barrier than that of complex medium grown cells, rather than a lysozyme-resistant peptidoglycan. The protein composition of outer membranes from complex and complex + Mg2+ + Ca2+ grown cells was similar, suggesting that divalent cations did not have a major influence on protein production related to outer membrane stability. The results indicate that certain complex bacteriological media may be deficient in divalent cations for maximum cell envelope stability and growth yield. This might be particularly significant for soil bacteria such as P. denitrificans, which may have evolved to have outer membranes more dependent on divalent cations for structural integrity than animal host adapted bacteria such as enteric bacteria. The results also draw attention to NaCl as an outer membrane perturbing agent.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3