Author:
Arneson Lynne S.,MacAvoy Stephen,Basset Ethan
Abstract
Stable isotopes are increasingly being used to examine ecological and physiological questions, such as dietary choices, migration routes and timing, and physiological condition. To address these questions in the field, laboratory experiments must be done to determine diet–tissue discrimination values and turnover rates for stable isotopes in tissues. In this study, we examined the carbon and nitrogen turnover rates of whole blood, skeletal muscle, liver, kidney, heart, and brain, as well as the sulfur turnover rate of whole blood, skeletal muscle, and liver in Mus musculus L., 1758 following a diet change. By examining tissue isotope change in two groups of mice fed different diets, we found that tissues turnover at different rates (in order of fastest to slowest — liver, kidney, heart, brain, whole blood, skeletal muscle), but that carbon, nitrogen, and sulfur isotopes turned over with similar half-lives within a single tissue. By using a diet with different nutrient isotopic values, we also calculated that up to approximately 90%–95% of carbon in newly synthesized tissue was contributed by dietary protein. These results will provide field researchers with additional tissue isotopic half-lives to elucidate dietary history with a greater degree of certainty. The tissue sulfur half-lives provide an extra stable isotope that may be used in situations where carbon and nitrogen values do not differ between old and new nutrient sources.
Publisher
Canadian Science Publishing
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献