Active learning for optimum experimental design—insight into perovskite oxides

Author:

Lourenço Maicon Pierre1ORCID,Tchagang Alain2,Shankar Karthik3,Thangadurai Venkataraman4ORCID,Salahub Dennis R.5ORCID

Affiliation:

1. Departamento de Química e Física—Centro de Ciências Exatas, Naturais e da Saúde—CCENS— Universidade Federal do Espírito Santo, Alegre, Espírito Santo 29500-000, Brasil

2. Digital Technologies Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada

3. Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

4. Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada

5. Department of Chemistry, Department of Physics and Astronomy, CMS Centre for Molecular Simulation IQST Institute for Quantum Science and Technology, Quantum Alberta, Calgary, AB T2N 1N4, Canada

Abstract

Finding the optimum material with improved properties for a given application is challenging because data acquisition in materials science and chemistry is time consuming and expensive. Therefore, dealing with small datasets is a reality in chemistry, whether the data are obtained from synthesis or computational experiments. In this work, we propose a new artificial intelligence method based on active learning (AL) to guide new experiments with as little data as possible, for optimum experimental design. The AL method is applied to ABO3 perovskites, where a descriptor based on atomic properties was developed. Several regressor algorithms were employed: artificial neural network, Gaussian process, and support vector regressor. The developed AL method was applied in the experimental design of two important materials: non-stoichiometric perovskites (Ba(1− x)A x Ti(1− y)B y O3) due to substituting ionic sites with different concentrations and elements (A = Ca, Sr, Cd; B = Zr, Sn, Hf), aiming at the maximization of the energy storage density, and stoichiometric ABO3 perovskites where different elements are changed in the A and B sites for the minimization of the formation energy. AL for experimental design is implemented in the machine learning agent for chemistry and design (MLChem4D) software, which has the potential to be applied in inorganic and organic synthesis (e.g., search for the optimum concentrations, catalysts, reactants, temperatures, and pH to improve the yield) and materials science (e.g., search the periodic table for the proper elements and their concentrations to improve the materials properties). The latter marks the first MLChem4D application for the design of perovskites.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. QMLMaterial─A Quantum Machine Learning Software for Material Design and Discovery;Journal of Chemical Theory and Computation;2023-08-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3