Affiliation:
1. Jianghan University, Wuhan 430056, P.R. China
2. Hubei Key Laboratory of Advanced Technology for Automotive Components & Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, P.R. China
Abstract
For catalytic reactions, temperature has a great influence on reaction rate and reaction mechanism. The oxidation processes of soot precursors (C6H6) at different temperatures are simulated using reactive force field molecular dynamics to investigate the effect of temperature on the oxidation process. The reaction products at different temperatures and the effect of temperature are discussed. The results show that the intermediate species C3 and C4 are more and existed longer at 1400 K than at 2000 K, while hardly existed at 2000 K, indicating that as the temperature increases, the oxidation reaction takes place more completely and the products formed are more stable. The effect of temperature on the oxidation mechanism is then explored; the results show that the main reaction pathway at 1400 K is basically the same as that at 2000 K, while the final product contains less hydrogen and more oxygen atoms at 2000 K. The C6 components with two, three, and four oxygen atoms are found easier to be decomposed at both 1400 and 2000 K. It shows that temperature mainly affects the catalytic reaction process by affecting the hydrogen and oxygen content of the decomposed C6 component. This may be helpful to understand the effect of temperature on the C6H6 oxidation from the perspective of basic research.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献