Possible influence of long-term sea surface temperature anomalies in the tropical Pacific on global ozone

Author:

Komhyr W. D.,Oltmans S. J.,Grass R. D.,Leonard R. K.

Abstract

A significant negative correlation exists between June–August sea surface temperatures (SSTs) in the eastern equatorial Pacific and 15–31 October total ozone values at South Pole, Antarctica. SSTs in the eastern equatorial Pacific were anomalously warmer by 0.67 °C during 1976–1987 compared with 1962–1975. Quasi-biennial oscillation (QBO) easterly winds in the equatorial Pacific stratosphere were generally stronger after 1975 than they were before that time. Prior to the early-to-mid 1970s the trend in global ozone was generally upward, but then turned downward. Total ozone at Hawaii and Samoa, which had been decreasing at a rate of about 0.35% yr−1 during 1976–1987, showed recovery to mid-1970s values in 1988–1989 following a drop in SSTs in the eastern equatorial Pacific to low values last observed there prior to 1976. During 15–31 October 1988, total ozone at South Pole, which had decreased from about 280 Dobson units (DU) prior to 1980 to 140 DU in 1987, suddenly recovered to 250 DU, though substantial ozone depletion by heterogeneous photochemical processes involving polar stratospheric clouds was still evident in the South Pole ozone vertical profiles. These observations suggest that the downward trend in ozone observed over the globe in recent years may have been at least partially meteorologically induced, possibly through modulation by the warmer tropical Pacific ocean waters of QBO easterly winds at the equator, of planetary waves in the extratropics, of the interaction of QBO winds and planetary waves, and of Hadley Cell circulation. A cursory analysis of geostrophic wind flow around the Baffin Island low suggests a meteorological influence on the observed downward trend in ozone over North America during the past decade. Because ozone has a lifetime that varies from minutes to hours in the primary ozone production region at high altitudes in the tropical stratosphere to months and years in the low stratosphere, changes in atmospheric dynamics have the potential for not only redistributing ozone over the globe, but also changing global ozone abundance.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3