Petrology and alteration of selected units of Mid-Atlantic Ridge basalts sampled from sites 332 and 335, DSDP

Author:

Baragar W. R. A.,Plant A. G.,Pringle G. J.,Schau Mikkel

Abstract

Closely spaced samples spanning 'flow units' at sub-bottom depths of 500 and 590 m in the drill hole at site 332B and a pillow at depth of 460 m, site 335, as well as a few individual samples at various depths in these holes and in the hole at site 332A, were studied with a view to determining compositional changes effected by submarine alteration. The rocks are predominantly plagioclase-olivine phyric tholeiitic basalts, with the exception of the lower unit of 332B, which is a picrite formed by the concentration of olivine megaphenocrysts in olivine tholeiitic basalt, is markedly flow-differentiated, and is assumed to be a sill. Three generations of plagioclase and olivine evident in some of the samples as corroded megaphenocrysts (An86−78, Fo89), euhedral microphenocrysts (An76−72, Fo85−84), and groundmass crystals (An72−61, Fo85−84), record a crystallization history that begins at depth, continues en route to the surface, and ends with quenching on the sea floor. Filling interstices of the groundmass are intergrowths, commonly submicroscopic, of pyroxene–plagioclase and dark, poorly resolved titanomagnetite-charged magmatic residue. The pyroxenes arc augites, ranging to subcalcic and ferroaugite. In places, particularly near pillow and flow unit margins, magma residue partially or completely in-fills vesicle cavities (segregation vesicles). Volatile-bearing phases (notably chlorophaeites, saponite, palagonite, amorphous silica-bearing hydrous iron oxides, and carbonates) tend to be characteristic of the three principal sites in which they are found: palagonite in the glassy margins of pillows and (or) flow units, complex hydrous mineraloids adjoining veins, and chlorophaeites and saponites in the interstices of the crystalline matrix of rocks remote from veins. The latter have the aspect of primary minerals. Palagonitization results in gains in K, Fe, Ti, and Cl, and losses in Ca, Mg, and Na, but net gains and losses in the other sites are less certain. Hydration and oxidation of iron invariably accompany development of volatile-bearing phases, but there is no correlation between these parameters and variation in content of the other analysed elements. Principal component analysis shows that the major part of the compositional variation can be explained by primary factors. In these samples chemical exchange with seawater appears to be limited, possibly because of their rapid isolation by burial from the main body of ocean water.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3