Pharmacophore-based screening and modification of amiloride analogs for targeting the NhaP-type cation-proton antiporter in Vibrio cholerae

Author:

Mourin Muntahi1,Bhattacharjee Arittra2,Wai Alvan1,Hausner Georg1,O’Neil Joe3,Dibrov Pavel1

Affiliation:

1. Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

2. Department of Biochemistry and Microbiology, North South University, Kuril – NSU Rd., Dhaka 1229, Bangladesh.

3. Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

Abstract

The genome of Vibrio cholerae contains three structural genes for the NhaP-type cation-proton antiporter paralogues, Vc-NhaP1, Vc-NhaP2, and Vc-NhaP3, mediating exchange of K+ and or Na+ for protons across the membrane. Based on phenotypic analysis of chromosomal Vc-NhaP1, Vc-NhaP2, and Vc-NhaP3 triple deletion mutants, we suggest that Vc-NhaP paralogues are primarily K+/H+ antiporters and might play a role in the acid tolerance response of V. cholerae as it passes through the gastric acid barrier of the stomach. Comparison of the biochemical properties of Vc-NhaP isoforms revealed that Vc-NhaP2 was the most active among all three paralogues. Therefore, the Vc-NhaP2 antiporter is a plausible therapeutic target for developing novel inhibitors targeting these ion exchangers. Our structural and mutational analysis of Vc-NhaP2 identified a putative cation-binding pocket formed by antiparallel extended regions of two transmembrane segments (TMSs V and XII) along with TMS VI. Molecular dynamics simulations suggested that the flexibility of TMSs V and XII is crucial for intramolecular conformational events in Vc-NhaP2. In this study, we developed putative Vc-NhaP2 inhibitors from amiloride analogs. Molecular docking of the modified amiloride analogs revealed promising binding properties. The four selected drugs potentially interacted with functionally important amino acid residues located on the cytoplasmic side of TMS VI, the extended chain region of TMSs V and XII, and the loop region between TMSs VIIII and IX. Molecular dynamics simulations revealed that binding of the selected drugs can potentially destabilize Vc-NhaP2 and alter the flexibility of functionally important TMS VI. This work presents the utility of in silico approaches for the rational identification of potential targets and drugs that could target NhaP2 cation proton antiporters to control V. cholerae. The goal was to identify potential drugs that could be validated in future experiments.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3