CspB and CspC are induced upon cold shock in Bacillus cereus strain D2

Author:

Li Haoyang1,Yang Rui2,Hao Linlin2,Wang Chunli2,Li Mingtang1

Affiliation:

1. College of Resource and Environment, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130018, China.

2. College of Animal Science, Jilin University, 5333 Xi’an Road, Changchun 130062, China.

Abstract

Bacillus cereus D2, a psychrotrophic strain, plays an essential role in the restoration of heavy metal-contaminated soils, especially at low temperatures. However, the cold shock response mechanisms of this strain are unclear. In this study, the cold shock response of B. cereus D2 was characterized; as per the Arrhenius curve, 10 °C was chosen as the cold shock temperature. Six cold shock-like proteins were found and temporarily named cold shock protein (Csp)1–6; the respective genes were cloned and identified. Quantitative real-time PCR results showed that csp1, csp2, csp3, and csp6 were overexpressed under cold shock conditions. Interestingly, after cloning the respective encoding genes into the pET-28a (+) vector and their subsequent transformation into E. coli BL21 (DE3), the strains expressing Csp2 and Csp6 grew faster at 10 °C, showing a large number of bacteria. These results suggest that Csp2 and Csp6 are the major cold shock proteins in B. cereus D2. Of note, the comparison of amino acid sequences and structures showed that Csp2 and Csp6 belong to the CspB and CspC families, respectively. Additionally, we show that the number of hydrophobic residues is not a determining feature of major Csps, while, on the other hand, the formation of an α-helix in the context of a leucine residue is the most dominant difference between major and other Bacillus and E. coli Csps.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3